Synergy Controller General Logic Programming Features

Introduction

Tidal Engineering's Synergy Controllers, including the Synergy Micro 2, Synergy Quattro, and the ¼ DIN Synergy Nano provide state-of-the-art usability and connectivity for environmental test control and data acquisition. They combine the functionality of a chamber controller and a data logger and are designed to improve test efficiency by supporting both factory automation and test and measurement protocols and standards. With the flexibility afforded by their multiple communication ports; Ethernet (10/100 Base-T), GPIB/IEEE 488, and RS-232, these controllers are perfect for today's dynamic testing environments.

The Synergy Controller software currently implements more than 30 high level functions (algorithms) called primitives which are designed to drive compressors, heaters, fans, and various refrigeration and humidity control components.

In addition, starting in Version 4.0.x these controllers have a variety of general purpose programming features that can be used to implement control logic such as timers, thermostatic (On/Off) output functions, time proportioning outputs, selectors functions, Latch, and logic output (AND, OR, NAND and NOR) functions. This application describes these general purpose primitives and provides examples.

- 1. On/Off output functions. Up to16 Available.
- 2. Time proportioning outputs (PWM). Up to16 Available.
- 3. Selectors functions. Up to16 Available.
- 4. Latch functions. Up to16 Available.
- 5. Logic output (AND, OR, NAND and NOR) functions. Up to 32 Available

Synergy Controller

July 2016, Revision B

Application Note 112

Tidal Engineering Corporation © 2016

ON/OFF Thermostatic Primitive

The ON/OFF Thermostatic Primitive (referred to as On/Off primitive below) is full featured two threshold thermostatic output with programmable Activation and De-activation timers. The output is active when the source variable is within the limits defined by the High and Low Engineering Thresholds and the output is not active when the source variable is outside these thresholds. The output value of the primitive in the Active state can be set to On or Off. In addition, hysteresis can enabled around the switch-points to prevent chatter and Activation and De-Activation Delay timers are individually settable.

The functionality of the On/Off primitive in its simplest form is as follows:

When the Active State parameter is set to On (1)	When the Active State parameter is set to Off (0)	
$f(x) = \begin{cases} 0, & x < Low Eng. Threshold \\ 0, & x > High Eng. Threshold \\ 1, & otherwise \end{cases}$	$f(x) = \begin{cases} 1, & x < Low Eng.Threshold \\ 1, & x > High Eng.Threshold \\ 0, & otherwise \end{cases}$	

The setup folders and parameters for the On/Off primitive are as follows:

Setup - milstd810f 11:42:18 AM		Control Variable parameter defines the Control variable x in the equation above.	
Special Functions\Logic\On/Off\1\		ONOFF#_SRC	
Control Variable High Threshold Low Threshold Hysteresis Value Active State On Delay Off Delay	Actual 1 (510) 100.00 0.00 0.00 On 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	 High Threshold parameter defines the high threshold; when the source parameter is above this threshold, the primitive output is inactive. ONOFF#_ENGMAX Low Threshold parameter defines the Low 	
Control when Off Description: the On/Off H Value, the ou	Disabled When the Control Variable is above igh Threshold plus the Hysteresis itput is deactivated	threshold; when the source parameter is below this threshold, the primitive output is inactive. ONOFF#_ENGMIN Hysteresis Value Parameter defines the	
Chamber Off	17.5 C 17.5 %	switching Hysteresis. ONOFF#_HYST	
		Active State Parameter defines value of the output in the active state, On or Off. ONOFF#_ACTST	
		On Delay is the number of seconds of delay before the output state changes after the source parameter gets inside the threshold	
Control When Off. When this parameter is Disabled,			
when the chamber is c Enabled, this output is even if the chamber is	off. When this parameter is still calculated and can be On Off.	Off Delay is the number of seconds of delay before the output state changes after the source parameter goes outside the threshold limits. ONOFF# OFFT	

Application Note 112

Tidal Engineering Corporation © 2016

The two diagrams below describe how this function operates graphically.

Synergy Controller

July 2016, Revision B

Application Note 112

Tidal Engineering Corporation © 2016

Selector Primitive Function

The Selector Primitive's output selects between two inputs based on the value of the Control Variable. The Function 1 input is copied to the Primitive's output when the value of when the Control Variable is less than the Set point and Function 2 input is copied to the Primitive's output when the Control Variable is less than or equal to the threshold.

The function of this primitive in its simplest form is as follows:

$$f(x) = \begin{cases} Function 1, & x > Threshold \\ Function 2, & x \le Threshold \end{cases}$$

Page 5 of 14

Application Note 112

Tidal Engineering Corporation © 2016

Selector output example

This Output switches between PWM1 and PWM 2 using the Selector Primitive.

PWM1 and PWM2 can be setup for different PV conditions.

The Selector Source variable is set to Actual Channel 1 (PV) and the threshold is setup for the switch temperature.

Application Note 112 Tidal Engineering Corporation © 2016

Logical Primitive Function

These functions implement AND, OR, NAND, NOR logic gates.

Setup - milstd810f	11:39:23 AM	Function n Four input functions are selected from a drop down list. LOGIC#_FUNCn
Function 1 Function 2 Function 3 Function 4	Output 8 (1008) Output 1 (1001) TRUE (1120) TRUE (1120) And	Logic set to AND, OR NAND, NOR. LOGIC#_TYPE On Delay is the number of seconds of delay
On Delay Off Delay Control When Off	0 0 Disabled	before the output state changes after the source parameter gets inside the threshold limits. LOGIC#_ONT
Change Chamber Off	d to input Function 1. 17.5 C 17.5 %	Off Delay is the number of seconds of delay before the output state changes after the source parameter goes outside the threshold limits.
		LOGIC#_OFFT Control When Off. When this parameter is Disabled, the output of this Logic function will always be off when the chamber is off. When this parameter is Enabled, this output is still calculated and can be On even if the chamber is Off.

Application Note 112

Tidal Engineering Corporation © 2016

Logic AND Example with equivalent Relay logic

Logic NAND Example for periodic timer function

10

5

10

Application Note 112 Tidal Engineering Corporation © 2016

Latch Primitive Functions

This function implements a Logical And, Or, Nand, Nor.

Setup - milstd810	f 11:31:17 AM	Set Function This input turns the latch on unless Reset or Clear Inputs are active.
Set Function	Input 1 (401)	Reset Function This input turns the latch off unconditionally.
Reset Function Clear Function On Delay	Output 1 (1001) Output 2 (1002) N	Clear Function This input turns the latch off.
Off Delay Control When Off	0 Disabled	On Delay is the number of seconds of delay before the output state changes after the Latch
Description: Help is not available for this item.		is set.
Change Chamber Off	17.5 C 17.5	6 Off Delay is the number of seconds of delay before the output state changes after the Latch is cleared.
		Control When Off. When this parameter is Disabled, the output of this latch will always be
		off when the chamber is off. When this parameter is Enabled, this output is still calculated and can be On even if the chamber is
		Off.

Appendix A Logic Programming Commands

On/Off Primitive Function Commands

Command Noun	Actions	Syntax	Arguments	Examples
ON/Off Function	ONOFF#_SRC Set	= ONOFF#_SRC ARG1	# - On/Off Instance 1-8	= ONOFF1_SRC 8
Control Variable			ARG1: 1-18	Set Source to CH1 Cool PID
	ONOFF#_SRC Query	? ONOFF#_SRC	# - On/Off Instance 1-8	? ONOFF1_SRC
				Response: 8
On/Off Function	ONOFF#_ENGMAX Set	= ONOFF#_ENGMAX ARG1	# - On/Off Instance 1 - 8	= ONOFF7_ENGMAX 30
High Threshold			ARG1: -200 to 5000	
	ONOFF#_ENGMAX Query	? ONOFF#_ENGMAX	# - On/Off Instance 1 - 8	? ONOFF7_ENGMAX
				Response: 30
On/Off Function	ONOFF#_ENGMIN Set	= ONOFF#_ENGMIN ARG1	# - On/Off Instance 1 - 8	= ONOFF7_ENGMIN 10
Low Threshold			ARG1: -200 to 5000	
	ONOFF#_ENGMIN Query	? ONOFF#_ENGMIN	# - On/Off Instance 1 - 8	? ONOFF7_ENGMIN
				Response: 10
On/Off Function	ONOFF#_HYST Set	= ONOFF#_HYST ARG1	# - On/Off Instance 1 - 8	= ONOFF8_HYST 1.5
Hysteresis			ARG1: 0 -999	
	ONOFF#_HYST Query	? ONOFF#_HYST	# - On/Off Instance 1 - 8	? ONOFF8_HYST
				Response: 1.5
On/Off Function	ONOFF#_ACTST Set	= ONOFF#_ ACTST ARG1	# - On/Off Instance 1 - 8	= ONOFF 8_ ACTST 1
Active State			ARG1: 0 - 3600 Seconds	
	ONOFF#_ ACTST Query	? ONOFF#_ ACTST	# - On/Off Instance 1 - 8	? ONOFF 8_ ACTST
				Response: 1
On/Off Function	ONOFF#_ONT Set	= ONOFF#_ONT ARG1	# - Logic Instance 1 - 8	= ONOFF7_ONT 30
Activation (ON)			ARG1: 0 - 3600 Seconds	
Delay Timer	ONOFF#_ONT Query	? ONOFF#_ONT	# - Logic Instance 1 - 8	? ONOFF7_ONT
				Response: 30
On/Off Function	ONOFF#_OFFT Set	= ONOFF#_OFFT ARG1	# - Logic Instance 1 - 8	= ONOFF8_OFFT 120
Deactivation (OFF)			ARG1: 0 - 3600 Seconds	
Delay Timer	ONOFF#_OFFT Query	? ONOFF#_OFFT	# - Logic Instance 1 - 8	? ONOFF8_OFFT
				Response: 120

Logic Primitive Function Commands

Command Noun	Actions	Syntax	Arguments	Examples
Logic Primitive	LOGIC#_FUNCn Set	= LOGIC#_FUNCn ARG1	# - Logic Instance 1-8	= LOGIC1_FUNC2 1003
Input Functions			n 1-4	Set Log 1 Function 2 to
			ARG1: Seem table below	Output 3
	LOGIC#_FUNCn Query	? LOGIC#_FUNCn	# - Logic Instance 1-8	? LOGIC1_FUNC2
			n 1-4	Response: 1003
Logic Primitive	LOGIC#_TYPE Set	= LOGIC#_TYPE ARG1	# - Logic Instance 1-8	= LOGIC1_TYPE 2
Function Type			ARG1:	
			0 - AND	
			1 - OR	
			2 - NAND	
			3 - NOR	
	LOGIC#_TYPE Query	? LOGIC#_TYPE	# - Logic Instance 1-8	? LOGIC1_TYPE
				Response: 2
Logic Primitive	LOGIC#_ONT Set	= LOGIC#_ONT ARG1	# - Logic Primitive 1 - 8	= LOGIC7_ONT 30
Activation (ON) Delay			ARG1: 0 - 3600 Seconds	
	LOGIC#_ONT Query	? LOGIC#_ONT	# - Logic Primitive 1 - 8	? LOGIC7_ONT
				Response: 30
Logic Primitive	LOGIC#_OFFT Set	= LOGIC#_OFFT ARG1	# - Logic Primitive 1 - 8	= LOGIC8_OFFT 120
Deactivation (OFF) Delay			ARG1: 0 - 3600 Seconds	
	LOGIC#_OFFT Query	? LOGIC#_OFFT	# - Logic Primitive 1 - 8	? LOGIC8_OFFT
				Response: 120

Application Note 112 Tidal Engineering Corporation © 2016

Selector Primitive Function Commands

Command Noun	Actions	Syntax	Arguments	Examples
Selector Primitive	SELECTOR#_SRC Set	'= SELECTOR#_SRC ARG1	# - Selector Instance 1-8	= SELECTOR1_SRC 1211
Control Variable			ARG1: 110 - 1299	Set to Channel 1 PID Heat
	SELECTOR#_SRC Query	? SELECTOR#_SRC	# - Selector Instance 1-8	? SELECTOR1_SRC
				Response: 1211
Selector Primitive	SELECTOR#_SP Set	= SELECTOR#_SP ARG1	# - Selector Primitive 1 - 8	= SELECTOR7_SP 30
Set Point			ARG1: Setpoint, float	
	SELECTOR#_SP Query	? SELECTOR#_SP	# - Selector Primitive 1 - 8	? SELECTOR7_SP?
				Response: 30
Selector Primitive	SELECTOR#_HYST Set	= SELECTOR#_HYST ARG1	# - Selector Primitive 1 - 8	= SELECTOR8_HYST 120
Hysteresis			ARG1: Hysteresis, float	
	SELECTOR#_HYST Query	? SELECTOR#_HYST	# - Selector Primitive 1 - 8	? SELECTOR8_ HYST
				Response: 120
Selector Primitive	SELECTOR#_FUNCn Set	= SELECTOR#_FUNCn ARG1	# - Selector Instance 1-8	= SELECTOR1_FUNC1 1025
Functions			n – 1 or 2	Set Function 1 to Output 25
			ARG1: Function	
	SELECTOR #_FUNCn Query	? SELECTOR#_FUNCn	# - Selector Instance 1-8	? SELECTOR1_FUNC1
			n – 1 or 2	Response: 1025

Synergy Controller

July 2016, Revision B

Application Note 112

Tidal Engineering Corporation © 2016

Appendix B Control variables selection from the Sensor Selection screen.

- 1. Select the Module from the list in the first column.
- 2. Then select the sensor or the sub-module from the Sensor list.
- 3. When necessary, select the sensor from the sensor list in third column.

Note: * Direct Thermocouple Inputs are not available on Synergy Micro 2.

Use the TE1908 Thermocouple Signal Conditioner if thermocouples are required.

UUT	Sensor Selection	

Dual Press.

Virtual Kft

Wet Bulb/Dry Bulb

PID CH 1 thru PID CH 4

Virtual Sensors

PIDS

 To select a sensor from the UUT Thermocouple module, Select UUTs from the Module column, and then select the UUT Module (1 thru 8) and then the Sensor (1 thru 8).

Setpt CH 1 thru Setpt CH 4

Application Note 112 Tidal Engineering Corporation © 2016

Control Variable IDs

Command Noun	Screen Identifier	Code	Example
High Res Analog	RTD1,RTD2	110, 120	110 is RTD1
	Analog1-Analog 4	130, 140, 150, 160	
UUT	UUT n	211, 212,218	UUT Module 2, Sensor 5 is 225
		221, 222,228	UUT Module 8, Sensor 8 is 288
		281., 282,288	
Low Res Analog	LowRes n	310, 320, 380	3800 is LowRes Analog 8
Digital Inputs	Digital In	400 + n	416 is Input 16
Actuals	Actual n	510, 520, 530, 540	Channel 2 PV is 520
Process Variables			
Setpoints	Setpoint n	710, 720, 730, 540	Setpoint 2 is 720
Digital Outputs	Outputs	1000 + n	1030 is Digital Output 30
Constants	Logic	1110 is False	1110 is False
		1120 is True	1120 is True
PIDS	12nx	12nx	1210 is Chan. 1 Heat
	n is the Channel	x = 0 Heat PID	1211 is Chan. 1 Cool
	x is the PID type	x = 1 Cool PID	1213 is Chan. 1 Full
		x = 2 Full PID	1214 is Chan. 1 Cascade
		x = 3 Cascade PID	1230 is Chan. 3 Heat
			1231 is Chan. 3 Cool
			1233 is Chan. 3 Full
			1214 is Chan. 1 Cascade
Not Digital Inputs	!Digital In	1400 + n	1405 is Not Digital Input 5
Not Digital Outputs	!Outputs	1300 + n	1330 is Not Digital Output 30

Application Note 112

Tidal Engineering Corporation © 2016

About the Synergy Controller Family

Tidal Engineering's Synergy Controllers; the Synergy Micro 2, Synergy Quattro, and the ¼ DIN Synergy Nano provide state-of-the-art usability and connectivity for environmental test control and data acquisition and combine the functions of a chamber controller and a data logger and are designed to improve test efficiency by supporting both factory automation and test and measurement protocols and standards.

Synergy Controller feature highlights includes:

- ➔ Color touch screen
- → Ethernet, RS-232 and GPIB communications
- → Built in 100 MB Data logger with USB drive support
- → Data Acquisition, up to 64 T-type thermocouples (Optional)
- → Built-in Web Server for remote control; WebTouch Remote ™
- → Compatible with Synergy Manager for PC based control, monitoring and programming.
- → Built-in FTP Server for factory automation and test and measurement applications

For more information regarding these controllers please visit <u>http://www.tidaleng.com/synergy.htm</u>

About Tidal Engineering

Headquartered in Randolph, NJ, Tidal Engineering Corporation has been designing and building awardwinning embedded hardware and software for test and measurement and data acquisition applications since 1992. The company is recognized for technical expertise in such areas as Embedded IEEE 488, and turnkey SCADA (Supervisory Control and Data Acquisition) systems.

> Tidal Engineering Corporation 2 Emery Avenue Randolph, NJ 07869 Tel: 973.328.1173 www.TidalEng.com info@tidaleng.com

